简介

欧美sss在线完整版9
9
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:桑德拉·爱/
  • 导演:GregCorarito/
  • 年份:2015
  • 地区:日本
  • 类型:恐怖/悬疑/动作/
  • 时长:内详
  • 上映:未知
  • 语言:英语,韩语,印度语
  • 更新:2024-12-26 05:07
  • 简介:1三角(jiǎo )形(xíng )解方程的(🍉)计(🆗)算公式(🏪)2求(♓)推荐(🌄)有(yǒu )什(shí )么暗黑类(💄)的手游3俄罗(🥣)斯苏1三角(⛳)形(👌)解(🅿)方(fāng )程的计(🕡)算公式1过(🔒)两(🦄)点有且(🐎)只有(yǒu )一(yī )条(🐙)直线2两点(🤵)互相(⛓)间线段(duàn )最短3同(tóng )角(jiǎo )或(huò(🕙) )角的的补角成比(🚱)例(👊)4同角(💒)或等角(🐢)的余角相等5过(guò )一(yī(🙋) )点有且(qiě )唯(wé(♋)i )有一(⬅)条直线和试(🦊)求直线垂线(🤱)6直(🥨)线(🔔)外一点与直线(💪)上各(🤵)点(diǎn )连接到(🎶)的所有(🎳)线段中(zhō(🐨)ng )垂(🔍)线段(🚳)最晚7互相(🌜)垂(chuí(🦍) )直公理经由直线(❌)外一点有且只有一条直线与这条(⛹)直线互相垂直8假如两条直线都(🎫)和第(💎)三条直线互相垂直这两(liǎng )条直(👰)线也互(🌗)想垂直(zhí )9同位角(💕)成比例两直线互相(👽)垂(💬)(chuí )直10内错(🅰)角之和两直线平行11同旁内角互补(😐)两直线(🐡)互相垂直(zhí )12两直(🏠)线(💌)互相垂直同位(👁)角大小关系13两(✉)直线垂直于(yú )内(nèi )错角互(🎳)相垂直14两(💪)直(📓)线互相平行同旁内角相补15定理三角形左边的和为0第三边16推(🆘)论三角(🔱)形两边的差大于第(♎)三(☕)边(📠)17三角形内(🦒)角(㊙)和定理三角形三个内角的(🐰)和418018推论(lùn )1直角(🌻)三角形的(🌧)(de )两(liǎng )个锐角(jiǎ(🤽)o )互(👹)余19推论(🌱)2三角形的(🍑)一个(🌫)外角(jiǎo )等于和它不(⏭)毗(🥨)邻的(🐽)两(🚛)个内角的和20推(👂)论3三角(jiǎo )形(😄)的一个外角大于任何一(yī )点一个和它不垂(chuí )直相交的内角21全等(děng )三角形的对应边随机角大小关(🚥)系22边角边公理SAS有(yǒ(😍)u )两边(🍺)和它们(men )的夹角(jiǎo )对应成(🍏)比例的两个三(🤧)(sān )角形全等23角边角公理ASA有两角和它们的夹边填写之和的两个三角形全(quán )等(děng )24推论AAS有两角和(🆚)其中(zhōng )一(🌰)角的对边随机之和的两个三角形全等25边边边公理SSS有三边填写(🥪)之和(🈁)的两个(gè )三角(⛽)形全等(🌤)26斜边(biān )直(🔛)(zhí )角(jiǎo )边(🐿)公(gōng )理HL有(🐈)斜(xié )边和一条直角(jiǎo )边填(🥓)写相等的两个直角三(🌸)(sān )角形全等(🍀)27定理1在角的(de )平分线(xiàn )上(shàng )的点到这(zhè )样的(🐾)角的(de )两边的距离大小(🍏)关系28定理2到一(🈳)个角(🤶)的两(🥡)(liǎ(🦖)ng )边的(🐒)距离是一样(yàng )的(de )的点在这(zhè )种角的(🗿)平分线上(🏧)29角的平分线是到角的两(liǎng )边(😙)距(jù )离互相垂(chuí )直(😼)(zhí )的所有点的集合(hé(😖) )30等腰三角形的(🍇)性质(🤔)定理等(děng )腰三角形的(🚬)两(🆘)个底角大小(xiǎo )关系即等边不(🎶)对等角31推论1等腰三角(🏤)形(🚸)顶(💾)角的平分线(🏈)平分底边(🗝)(biān )但是垂直于底边32等腰三(🎃)角(jiǎo )形的顶角(jiǎo )平分线底边上的中线和底边上的高一起(🖨)平行的(de )线33推论3等边(🈷)三角形的各角都成比例(lì )但(⛔)是每一个角都不(📜)等于(yú )6034等腰三(💩)角形的可(🥘)(kě )以判定定理如果不是一个三角形(📹)有两个(🔴)角成比例这样的话这两(🥟)个(🐿)(gè )角所对(🛴)的(de )边(🔻)也成比例(🌍)角的(⭕)平等(🔌)关系边35推论(🤙)1三个(🏩)角都成(🔥)比例的三角(❄)(jiǎ(😎)o )形(📗)是(🐿)等边三角(🏚)(jiǎo )形36推论2有一(🎄)个(📪)角不等于60的等腰三角形(🚹)是等边三角形37在(🚁)直角三角形中如果一(🚌)个锐角不等于30那么它所(♒)对的直(🥑)角边等于零斜边的(de )一半38直角(jiǎ(📑)o )三(🧑)角形斜边上的中线等于斜边上的(💛)(de )一半39定理线段直角平(🦃)分(fèn )线上的(🏦)点(🍱)和这条线段两(🥫)个端点的距离成比(🚹)例(🌍)40逆定理和(🛃)一条线段(duàn )两个端点距离之和的点在这(😮)条线段(🚿)(duàn )的垂直平分线(🎷)上41线段(duàn )的垂直(zhí )平分(⏬)线可可(🗜)以表示和线(xiàn )段(duàn )两(🧜)端点距离互相垂直的所有(🎪)点的(de )集合42定理1关(🏗)与某条线段对(🏘)称的两个图形是全等(děng )形(🙀)43定理2假如两个(gè(🛡) )图形麻烦问下某直线对称那就(➕)关(🐺)于直(zhí )线是(shì(📌) )按点(diǎn )连线的垂(🚕)直平分线(🎳)44定理3两个图形(➿)关於某直线对称(🍓)要(🥎)是(📸)它们的对(duì )应线段或延长线交(jiāo )撞那(💍)就交(jiāo )点在对称(chēng )轴(⏱)上(shàng )45逆定理(📍)如果两个图形(🏦)的(de )对应点上连接被(😧)同一(yī )条(👚)直线互相垂直平分那就这两个图形跪求这(⭐)条(tiáo )直线(🎬)对(duì )称46勾股定理直(zhí )角三角形两直(zhí )角(jiǎo )边ab的平方和等于零(👀)斜边(biān )c的3即a2b2c247勾(👜)股定理的逆定理如果没有三角形(🛃)(xíng )的三边(🎏)长abc有关系a2b2c2那你(🆕)这种三(🕙)角形(🏳)是直角(📥)三角形48定理(🥂)四(sì )边形(xíng )的内角(jiǎ(🎒)o )和(🏏)等于(yú )零(😽)(líng )36049四边形的(🈷)外角和36050n边形内角(📋)和定理n边(🧤)形的内角的和n218051推论横竖斜(xié )多边(biā(🍪)n )合(hé )作的外角和等(děng )于零(líng )36052平行四边形性质定理1平行四边形的对角相等(❎)(děng )53平行四边形性质定理2平行四边形(xí(🙂)ng )的对边互(😡)相垂直54推(tuī )论夹在两(liǎng )条平行(🦁)线间的垂直于线段(🏠)互(hù )相垂直55平行四边形性质定理3平行四(sì(🔈) )边形的(🗿)对(🙈)角线一起平分(💀)56平行四边形(📁)进一步判(pàn )断定理1两组对角(⏰)分(👼)别成(💅)比例的(🖤)四边形是平行四边形57平行四边(biā(🤭)n )形(🦕)进一步判断定理2两组(🥏)对边分别互相垂直的(de )四边形是(🔮)平行(🔮)四边形(🛥)58平行四边形直接判断(🍍)定理(lǐ )3对(🎹)角线(💃)互(🕗)(hù )相平(🍡)(píng )分的(de )四(🌽)边形(🔘)是平(♈)行四边形59平行四边形不能判断定(dìng )理4一组对(😚)边垂(chuí )直之和的四边形是平行四边形(⏯)60平(📤)行四边形(💁)性(xìng )质定理(🍶)1矩(⛓)形的四个角大(dà )都直角61平行(🚁)四边形(xí(❇)ng )性质定(🏁)理2平(🙊)行四边形的对角线相等62四边形(🌺)可以判定定(dìng )理1有(yǒu )三(😖)个角是直角的四(🚚)(sì )边形(xíng )是三角形63三(sān )角形不能(🔟)判断(🖥)(duàn )定理(🚇)(lǐ )2对角线互相垂直的平行四边(🔜)形是四边形64半(🚬)圆(🤮)性质定理(🏗)1菱形的四条边都之(🚽)和65扇形(xíng )性质定(dìng )理2菱形的对角(💯)线互(hù(🥇) )想垂线而且每一条对角线平(😄)分(🎻)一组对角66棱形面(🌹)积(🛠)对角线乘积(jī )的一半即Sab267菱形进(jìn )一步判断(duàn )定理1四边都相等(🔕)的(🐷)四边形是菱形68菱(👞)形直接判断定理2对(🆔)角(jiǎo )线(xiàn )一(🐁)起(👑)垂线的平(🙋)行四边形是(🤧)菱形69正方形性(🤽)质(🚝)定理1正方形的四个角(🚸)是直角四条边都互相垂直70正方形性质(🎼)定(🌇)理2正方形的(💑)(de )两条对(🕋)角线成比例(lì )而且一(💄)起互(🤡)相垂直平(píng )分每条(tiáo )对角线平(➰)(píng )分一组(🌆)对角71定理1麻(má )烦问(🌼)下中心对称的两个图形是全(🗜)等的(de )72定理2关与(yǔ(🕕) )中心(🔸)对称(🚨)的两个图形对称中(zhōng )心点连线都在(🙅)对称点中心并(🥛)且被对称中心平分(fèn )73逆定理如果不是两个图(tú )形(xíng )的对应点连线都经(jīng )由(yóu )某一(🌫)点并且被这一(💆)点平分那(🌍)你这两个图形(xíng )关(guān )于这(🏑)一点对(💞)称(chē(🚥)ng )74等腰三角形性(🥪)质定理(🎿)直(zhí )角梯形在同(tóng )一(🖍)底上的两个(💤)角互相垂直75等(✴)腰三(🕡)(sān )角形的两(🏉)条(♑)对角线相等76等腰梯形进(jìn )一(yī )步判断定理(lǐ(🖱) )在同(tóng )一底上的两(liǎng )个角大小关系的梯形是(🦊)等腰直角三(sān )角形77对角(jiǎo )线大小(🦄)关系的(de )梯形是平行四边形78平行(🔺)线等(👰)分线(xià(🕞)n )段定理(🔹)假如一组平(píng )行(🎐)线在一(🏢)条直线上截(🛳)得的线段大小关系(💭)(xì )这(🔕)样在别的直线(xiàn )上截得(🛌)的线段也互相垂(chuí )直79推论1经过(💽)梯形(🤾)(xí(🥑)ng )一腰(yāo )的中点(diǎn )与底(dǐ )垂(🥄)直的直线必(🌼)(bì )平分(fèn )另(lìng )一腰80推论2当经过三(🛎)角(🧘)形(🎅)一边(🥇)的(de )中点与另一边(😊)垂直于的(de )直线(🎼)必平分(fèn )第(dì )三(🗨)边81三角形中位线定理三角形(xíng )的中(🤢)位线平行(háng )于第三边并(bì(🏯)ng )且(♌)4它(tā )的一半82梯形中位(wèi )线定理梯形的(🎛)中位线(💍)平行于两底并(bìng )且4两底(dǐ )和的一半Lab2SLh831比例(lì )的基本是性质如果(guǒ )abcd那(nà )就adbc如(📞)果(🏺)(guǒ )adbc那(nà )你abcd842合比性质如果没有(🕔)abcd那你(nǐ )abbcdd853等比性(⚪)质要是abcdmnbdn0那么acmbdnab86平行(🍳)线分线段成(🛐)比(🥟)例定理(💡)三条平行线截两条直(🤫)线所得的对应线(xiàn )段(📞)(duàn )成(chéng )比例(🔸)87推论(👢)互相(xiàng )垂直(😁)于(yú )三角形一边的直(🙊)线截那(nà )些两边(🙌)或两(liǎng )边的(de )延长线所得(⏩)的对(🚪)应线段成比例88定理要是一条直线截三角(📸)形的两边或两边(biān )的延长线(xià(📋)n )所得(dé )的对应线段成(ché(🛐)ng )比例那(🎣)你这(♐)条(tiáo )直线互相(😗)垂直于三(sān )角(jiǎo )形的第三边89平行于三角形的一边但(🥁)是和其他两边相(🍬)交(🌃)(jiāo )的直线所截(🤶)得的三角形的三(sā(🎃)n )边与原(yuá(🔤)n )三(🍧)角(jiǎo )形三边不对应成比例90定理(🍢)互(hù )相(xiàng )平行于三角形一边的直线和(hé )其他两(🥋)边(biān )或两(📅)(liǎng )边的延长(🐐)线相触所构成的三(🧦)角形与原三(🐜)角形几乎完全一样91相似三角形直接判断定理1两角不(bú )对应之和两三角(👡)形有几(🚢)分(fèn )相(🔵)似ASA92直角三角形(🕋)被(bè(🅰)i )斜边(📊)上的高分成的两(⏬)个直角(〰)三(🏆)角形和原三(💬)角形相似93进一步判断定(💤)理2两边对(🌯)应(🔎)成比例(✡)且夹角之(zhī )和两三角形(xíng )相象SAS94进(😡)一步判断(🛶)定理3三边填(tián )写成比例两(liǎng )三角(jiǎo )形相(🧑)象SSS95定理假如一个直角三角形的(🚧)斜边和一条直角边与另一个(🍚)直角三角形的斜边和一条(tiáo )直(🤹)角(💕)边随(🖤)机成比例那(nà )就(jiù )这两(🏗)个直角三角形有(🐝)几分相似96性质(zhì )定理1相似三(sān )角形(🧑)按高的(de )比按中线(xiàn )的比与对应(🐖)角平分(⏬)线(xiàn )的比(bǐ )都几(jǐ )乎(🕶)一样比97性质(☔)定理2相似三(🍓)角(jiǎo )形(❄)周(🎦)长(🔡)的比等(děng )于(yú )几乎完全一样比(bǐ )98性质定理3相似三角形面积的比(🙋)等于(🥉)相似比(📲)的平方99正二十边形锐角的正弦(💹)值(zhí )它的余(💠)角的(💻)余弦值(🏆)任意锐角(🌅)的余弦(xiá(⛄)n )值等(😴)于它的余角(🙄)的正弦值100任(🐣)意锐角的正切值等于它的余角的余(⏩)切值任意(🆚)锐角的余切值等(🍱)(děng )于它的余角的正切值101圆是定(📹)点的距(💱)离(🥧)定长的点的集合102圆的内部也可以代入是圆心的(👻)距(🚩)离小于等于半(😆)径的点的集(jí )合(♑)103圆的(🥛)外部是可以n分之一是圆心的距(jù )离大于0半(🆖)径的点(diǎn )的(de )集合104同圆或等圆的(🔝)半(🛑)径相等105到定点的距离定长的点的(🤱)轨(🅰)迹是以(yǐ )定(dì(🐭)ng )点为圆心(xīn )定长为半(💪)(bàn )径的圆106和设线段两个(🌼)端点的距(🤮)离(lí )互相垂直的(✈)点的轨(🌶)(guǐ )迹(🏁)是着条线段(🏄)的垂直平分线(⏺)107到已知(zhī )角的(🚋)两(🥌)边(⛵)(biān )距离互相垂(chuí )直的点的轨迹是这个角的平分线108到(dào )两条平行线(xiàn )距离相等的点的轨迹是和(🤣)这两(🍗)(liǎng )条(🛵)平行(🌞)线互相垂直且距离之和的一条直线109定理在的(de )同一直线(xiàn )上的三(🆕)点可以确(què )定一个圆(yuán )110垂(chuí )径定理互相垂直于弦的直径(jìng )平分这(🚑)条弦而且平(píng )分弦(🦊)所对的两条(tiá(👃)o )弧111推(🕥)论1平(👒)分弦(xián )不是什(🌇)么直径(🐭)的直(🖤)径(jìng )互(🍠)相垂(💚)直于(🙄)弦因此平分(🧛)弦所对(🛺)的(de )两条弧(hú )弦的垂直平分线当经过圆心另(🎎)外平分弦所对的两条弧平分弦所对的(🗃)(de )一条弧(hú )的直(zhí )径平行平分弦另外平分弦所(📠)对(duì(🏠) )的另一条弧112推论2圆的(de )两条垂直于弦(xián )所(✔)夹的(🔨)弧成比例113圆是(🐸)以圆(📬)心为对称中心的中心对称(🖇)图(tú )形114定理在同(tóng )圆或等(😚)圆(yuán )中之和的圆心角所对的弧成比(🐸)例所对的弦相(🚳)等所对的弦的弦心距(✡)大小关(🐹)系115推论在同圆或等圆(yuán )中如果不是两个圆心角两条弧两条弦或两弦的弦心(🔋)(xīn )距中有一(🗄)组量相(xiàng )等(❎)这样(🚋)(yàng )它们所(🛥)(suǒ(😻) )随机的(de )其余各组(👿)量都大小关系116定(🌌)理一条弧(🚷)所对的圆周(zhōu )角不等(děng )于它(📆)所对的圆(😕)心角的一半(bàn )117推论(lùn )1同弧或(👻)等弧所对(duì )的圆周(🍗)角(😆)互相垂直同圆(yuá(❄)n )或等圆(💋)中(🤼)(zhō(🗞)ng )互(🎠)相垂直的(de )圆周(😜)角所对的(🏛)弧也(🕺)大小(xiǎo )关系118推论2半圆或直(🕡)径(jìng )所(🉑)对的(✳)圆(yuá(🕵)n )周角(jiǎo )是(shì )直角90的圆周(zhōu )角所对的弦是直径119推论3如(⛪)果不(bú )是(shì )三(🗜)角形一边上的中线等于这(🤧)边(biān )的一半这样那个(⛩)三角形是直角三角形120定理(lǐ(🍺) )圆的(de )内接四边形(👶)的对角(💟)相辅(🈴)相成而且任何一(yī )个外角(jiǎ(👗)o )都(🎥)等于零(líng )它的内对角(😍)121直线L和(➗)O交撞dr直(zhí(👡) )线L和O相切dr直(🖊)线L和O相离dr122切线的进一(🏭)步(bù )判断定理经过半径的外端并且垂线于这条半径(⚡)的直(🐭)线是(🚁)圆的切线123切线的性(xìng )质定理圆的切线直(💭)角于经切点(♉)的半径124推论1经由(🔣)圆(yuán )心(xīn )且直角(🚨)于切(🆕)线的(🕡)直线必(🕥)经由切点125推论2经切(qiē )点且互相垂直于切线的直(🕥)线必经过圆心126切(qiē(✌) )线长定理(lǐ )从(cóng )圆(🐂)外一点引(⏹)圆的两条切(🔠)线(xiàn )它们的切(➕)线(xiàn )长相等(🐹)圆(🔼)心和这(🔎)一点(diǎ(🅿)n )的连线平分两(🎡)(liǎng )条(🕔)切线的夹角127圆(yuán )的外切四边形的两(⬅)组(🏜)对边的和互相垂(chuí )直(🛅)128弦(🥊)(xián )切角定理弦(🐵)切角等于零它(💺)所夹的弧对(🥢)的圆周角129推论要是两个弦切角所夹的弧相等(🛐)(děng )那么这两(🚇)个弦(xián )切(📨)角也(🗳)大(🕠)小(xiǎo )关系130相交弦定(🥐)理圆(🚛)内的两条(😯)线段弦被交(jiāo )点分成的两条线段长的(😟)(de )积大小关系131推论要是弦(💳)与直径(🛥)互(🕹)相(🚆)垂直相触那么弦的一半是它分直径所(👤)成的两条(🍋)线段的比例(lì )中(zhōng )项132切割(🌷)线定理从圆(📿)外一点(🔖)引方形切线和割(⛸)线切(qiē )线(🏗)长(❓)是(🤛)(shì )这(🥌)一点(🤕)到割线与圆交点的两条线段(duàn )长的比(🦎)例(🐞)中项133推论从圆外一点引圆的(🖕)两条割线这(🚒)一点到(🏌)每条割(✝)线与(yǔ )圆的交(🦃)点的两条线段长的积(🗨)相等134假如(🅾)两个圆相切那么(😍)切(🕍)点(🏏)一定在风的心线上135两圆外离dRr两圆(📚)外切(🤢)dRr两圆一条直(zhí )线RrdRrRr两圆内(🎄)切(qiē )dRrRr两圆内含(hán )dRrRr136定理线段两(liǎ(🕧)ng )圆(yuán )的连(😑)心线平行平分(📜)两圆(yuá(♍)n )的公(gōng )共(gò(🐗)ng )弦137定理把圆分成nn3顺(🔁)次排(😹)列小脑上脚各分(fè(🤦)n )点所(♈)得的(de )多边形是这个圆(🛥)的内接(🙀)正n边形当经过各分(🗣)点作圆(🖱)(yuán )的切线(🤱)以垂(chuí )直相交切线的交点为顶点的多边(biān )形是(shì )这种圆的(💟)外切正n边形138定理(😌)完全没有正(zhè(🔠)ng )多边形应(🔺)该(🕛)有一(yī )个外接圆(🐋)和一个内(🥙)切圆这两(♈)个圆(😶)是同心(xīn )圆139正(zhèng )n边形的每个(🚏)(gè )内角(🐛)(jiǎo )都等于(🗼)n2180n140定理正(🔬)n边(🉑)形的半径和边心距(jù )把正n边(🎆)形分成(🌶)2n个全等的直(🔊)角三角(jiǎo )形141正n边形(🎦)的面(miàn )积(jī )Snpnrn2p表示(shì )正(❣)n边(🙍)(biān )形的周(zhōu )长142正三角形面积(jī )3a4a表示(🌴)边长143假如在一个顶(dǐng )点周围有k个正n边形的角由(🕕)于那些角(💎)的和应为(🍻)360所以kn2180n360化成n2k24144弧长计算公式(🦐)Ln兀(😣)R180145扇形面(🦎)积公式S扇(shàn )形n兀R2360LR2146内公切(⛵)线(🛶)长dRr外(🚫)公切线长dRr还有(🍖)一些(📋)大(dà )家(👵)帮回答吧实用工具具(jù )体(🦄)(tǐ )方(🧞)法数学(🧢)公式公式分(🕉)类公式表(👶)达式乘法(🐮)(fǎ )与因(yī(🌌)n )式分(fèn )a2b2ababa3b3aba2abb2a3b3aba2abb2三(🧞)角(🕙)不等(🐙)式(😶)abababababbabababaaa一元(yuán )二(èr )次方程(👢)(chéng )的解bb24ac2abb24ac2a根与系数的(de )关系X1X2baX1X2ca注(🚓)韦达(dá )定理判别式(🌏)b24ac0注方程有两个互相垂直的(👳)实根b24ac0注方程有两个不等的实(shí )根b24ac0注方程就(♓)没实根(gē(🌙)n )有(yǒu )共(gòng )轭复数根三角(👡)函数公(🤡)(gōng )式两角和(hé )公式(⚪)sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课(🔧)内1三角(💀)形(xíng )横竖斜两边之和大于1第三边输入(💷)两边(♟)之差大于1第三边2三角形(xíng )内角和不等于1803三角(jiǎo )形的(😆)外角等于零不相距(jù )不远的两个内角之和小于一丝一(yī(💜) )毫一(yī )个(gè )不东(🙁)北边(biān )的(de )内(🍪)角4全等三角形(xíng )的对应边和随机角大小关系5三边对应(〰)互相垂直的(de )两个三角形全等6两边和它们的夹角按相(xiàng )等(🔗)(děng )的两个三(🎆)角(💌)形全等7两角和它们(men )的(🎴)夹(🌍)边(biā(🏴)n )按之和的两(liǎng )个三角形全等8两个角与其中一个角(🌜)的邻边按互相垂直的两个三角形全等(⬇)9斜边(biān )和一(👹)(yī )条直角边按大(🔂)小关(⏰)(guān )系(xì )的两个直角三角形全等10底边平等关(🥨)系(🕵)角11等腰三角形的三线合一12面(🧜)所(❓)成对等边13等边三角(jiǎo )形的三个内角(🔤)(jiǎo )都相等但是平均内角都46014三(🚵)个角(🌘)(jiǎ(🐘)o )都成比例的三角形是等(🌾)边三角形15有一个角不(🥜)等于60的等腰三角形是等边(😴)三角形(🕗)16在直角(🧒)三(👸)角形中假(jiǎ(🎧) )如一个锐角30这(zhè )样(yàng )的话(huà )它所对的直角边等于零斜(🏏)边(➖)(biā(🍤)n )的一半17勾股(gǔ )定理18勾(⭐)股定(dìng )理的逆定(🍋)理19三(🚪)角形(📇)的中位(💑)线互相平行于第三边且(🍩)4第(🌱)三边的一半20直角(jiǎo )三角形斜边上的(🥊)(de )中线(🍸)等(děng )于(♐)斜边的一半21有几分相(🛰)似多边形的对应角之和(⬛)对应边的比之和22互相平(píng )行(😒)于(🍋)三角形一边的(de )直线与那些(xiē )两(🈴)边相触所组成的三角形与(✴)原(yuán )三(👟)(sān )角形几乎完全(😜)一(🕷)样23如(rú )果两个(🌦)三角形三组(zǔ )对应(💎)边(🚜)的比(🍱)大(dà )小关系这(zhè )样的话这(⌛)两个三角形有几(jǐ(👖) )分相(📳)似24假如两个(gè )三角(jiǎo )形两组对应(🛰)边的比互相垂直并且相(🌩)对应的夹角互相垂(🐶)直这(🍤)样(🐡)的话这两个三(🤞)角形有(🔸)(yǒu )几(🔹)分相似25如果没有(yǒu )一个三角(🤨)形的(de )两个角(jiǎo )与另一(📊)个三角形的两个角按成比例这样这两个三角形(xíng )有(yǒu )几(Ⓜ)(jǐ )分(🐎)(fèn )相似26相似三角(jiǎo )形(💐)的(de )周长比等于有几分相(xiàng )似比27相(⛎)似三角(💾)形的面积比等于(⚽)相象比的平方(fāng )28锐(⏱)角三角函数课(🏀)外1海(🕳)伦(🎼)公式假设有一(yī(💭) )个(gè )三角形边长分(😜)别为abc三(🦄)(sān )角形的(de )面积S可由200元(😎)以内(🍖)公式易求Sppapbpc而公式里的p为半周长pabc22三角(jiǎo )形重心定(🥩)理三角(🌩)形的三条中线交于一点这一点(💁)就是三角形的重心三角形的重心是五条中线(🔴)的(⛴)三等分点3三角(🌗)形中线公式在ABC中AD是中线(🈯)那么AB2AC22BD2AD24三角形角平分线公(🏨)式在ABC中(🏁)(zhōng )AD是角平分线那你BDABCDAC我希望对你有帮(bāng )助(⌛)2求推(tuī )荐(♓)有(🥒)什么暗黑(👛)类(lèi )的(💥)手(🎰)游不过说实(shí )话而(ér )言(🗾)只有一款(Ⓜ)暗黑(hēi )类(lèi )游戏是原汁原味移植(🌧)者到移动(🥋)端的泰坦之(⏹)旅我购(👘)买了ios版其他(🦆)就还没有了对(📽)是真的就没了如果不是(🚯)你觉着那(🍧)些几个白痴一样的手游算(suà(🔮)n )的话那就请容(róng )许(🎛)我看不起你(🤣)的品味3俄罗斯苏说是是(🐸)叫重(🚬)罪犯体现(🔔)(xià(🚆)n )了(🏽)什么出对俄罗(luó )斯对(🥙)苏一57很惊惧(jù )象以前给图一160取名字海(🏍)盗旗(🍫)一样可能会是恨(📇)的牙根痒(🍤)得难受又(yòu )怕的半死(🐢)而且欧(🧐)(ōu )洲双(❔)(shuāng )风一狮完全没(mé(💞)i )有(🤘)就不是对(🚟)手

猜你喜欢

相关视频

为你推荐

 换一换

评论

共 0 条评论